[1] Winters S, Martin C, Murphy D, et al. Breast Cancer Epidemiology, Prevention, and Screening. Prog Mol Biol Transl Sci 2017; 151: 1–32.
DOI: 10.1016/bs.pmbts.2017.07.002
[2] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 2018; 68: 394–424.
DOI: 10.3322/caac.21492
[3] Las cifras del cáncer en España 2018, https://www.seom.org/ultimas-noticias/106525-las-cifras-del-cancer-en-espana-2018 (accessed 6 September 2018).
[4] López-Abente G, Aragonés N, Pérez-Gómez B, et al. Time trends in municipal distribution patterns of cancer mortality in Spain. BMC Cancer 2014; 14: 535.
DOI: 10.1186/1471-2407-14-535
[5] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-386.
DOI: 10.1002/ijc.29210
[7] Llort G, Chirivella I, Morales R, et al. SEOM clinical guidelines in Hereditary Breast and ovarian cancer. Clin Transl Oncol 2015; 17: 956–961.
DOI: 10.1007/s12094-015-1435-3
[8] Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med 2008; 10: 294–300.
DOI: 10.1097/GIM.0b013e31816b5cae
[9] Lindor NM, Goldgar DE, Tavtigian SV, et al. BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist 2013; 18: 518–524.
DOI: 10.1634/theoncologist.2012-0452
[10] Thompson BA, Spurdle AB, Plazzer J-P, et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat Genet 2014; 46: 107–115.
DOI: 10.1038/ng.2854
[11] Richards S, Aziz N, Bale S, et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–424.
DOI: 10.1038/gim.2015.30
[12] Nykamp K, Anderson M, Powers M, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med 2017; 19: 1105–1117.
DOI: 10.1038/gim.2017.37
[13] Mucaki EJ, Caminsky NG, Perri AM, et al. A unified analytic framework for prioritization of non-coding variants of uncertain significance in heritable breast and ovarian cancer. BMC Med Genomics 2016; 9: 19.
DOI: 10.1186/s12920-016-0178-5
[14] Caminsky NG, Mucaki EJ, Perri AM, et al. Prioritizing Variants in Complete Hereditary Breast and Ovarian Cancer Genes in Patients Lacking Known BRCA Mutations. Hum Mutat 2016; 37: 640–652.
DOI: 10.1002/humu.22972
[15] Bonache S, Esteban I, Moles-Fernández A, et al. Multigene panel testing beyond BRCA1/2 in breast/ovarian cancer Spanish families and clinical actionability of findings. J Cancer Res Clin Oncol 2018; 144: 2495–2513.
DOI: 10.1007/s00432-018-2763-9
[16] Gabaldó Barrios X, Sarabia Meseguer MD, Marín Vera M, et al. Molecular characterization and clinical interpretation of BRCA1/BRCA2 variants in families from Murcia (south-eastern Spain) with hereditary breast and ovarian cancer: clinical-pathological features in BRCA carriers and non-carriers. Fam Cancer 2017; 16: 477–489.
DOI: 10.1007/s10689-017-9985-x
[17] Sheikh A, Hussain SA, Ghori Q, et al. The spectrum of genetic mutations in breast cancer. Asian Pac J Cancer Prev 2015; 16: 2177–2185.
DOI: 10.7314/APJCP.2015.16.6.2177
[18] Blanco A, de la Hoya M, Osorio A, et al. Analysis of PALB2 gene in BRCA1/BRCA2 negative Spanish hereditary breast/ovarian cancer families with pancreatic cancer cases. PLoS ONE 2013; 8: e67538.
DOI: 10.1371/journal.pone.0067538
[19] Gracia-Aznarez FJ, Fernandez V, Pita G, et al. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles. PLoS ONE 2013; 8: e55681.
DOI: 10.1371/journal.pone.0055681
[20] Desmond A, Kurian AW, Gabree M, et al. Clinical Actionability of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Risk Assessment. JAMA Oncol 2015; 1: 943–951.
DOI: 10.1001/jamaoncol.2015.2690
[21] Buys SS, Sandbach JF, Gammon A, et al. A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 2017; 123: 1721–1730.
DOI: 10.1002/cncr.30498
[22] Manahan ER, Sebastian M, Hughes KS, et al. Consensus Guideline on Genetic Testing for Hereditary Breast Cancer.
[23] Daly MB, Pilarski R, Berry M, et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast and Ovarian, Version 2.2017. J Natl Compr Canc Netw 2017; 15: 9–20.
DOI: 10.6004/jnccn.2017.0003
[24] ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ (accessed 29 May 2018).
[25] Sherry ST, Ward M-H, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–311.
DOI: 10.1093/nar/29.1.308
[26] HGMD® home page, http://www.hgmd.cf.ac.uk/ac/index.php (accessed 30 May 2018).
[27] Home - LOVD - An Open Source DNA variation database system, http://www.lovd.nl/3.0/home (accessed 29 May 2018).
[28] LitVar, https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar/ (accessed 8 November 2018).
[29] PolyPhen-2: prediction of functional effects of human nsSNPs, http://genetics.bwh.harvard.edu/pph2/ (accessed 25 September 2018).
[30] Sim N-L, Kumar P, Hu J, et al. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40: W452–W457.
DOI: 10.1093/nar/gks539
[31] Schwarz JM, Cooper DN, Schuelke M, et al. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014; 11: 361–362.
DOI: 10.1038/nmeth.2890
[32] Align GVGD, http://agvgd.hci.utah.edu/ (accessed 2 November 2018).
[34] Cooper GM, Stone EA, Asimenos G, et al. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15: 901–913.
DOI: 10.1101/gr.3577405
[35] Garber M, Guttman M, Clamp M, et al. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 2009; 25: i54–i62.
DOI: 10.1093/bioinformatics/btp190
[36] Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res 2010; 20: 110–121.
DOI: 10.1101/gr.097857.109
[37] Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res 2001; 29: 1185–1190.
DOI: 10.1093/nar/29.5.1185
[38] Zhang MQ. Statistical features of human exons and their flanking regions. Hum Mol Genet 1998; 7: 919–932.
DOI: 10.1093/hmg/7.5.919
[39] Reese MG, Eeckman FH, Kulp D, et al. Improved splice site detection in Genie. J Comput Biol 1997; 4: 311–323.
DOI: 10.1089/cmb.1997.4.311
[40] Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 2004; 11: 377–394.
DOI: 10.1089/1066527041410418
[41] Varsome The Human Genomics Community, https://varsome.com/ (accessed 4 February 2020).
[42] Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. The American Journal of Human Genetics 2017; 100: 267–280.
DOI: 10.1016/j.ajhg.2017.01.004
[43] Soto-Martínez, JL. Módulo 2. Diagnóstico genético. In: Curso de cáncer hereditario (IX Edición). 2019.
[44] Singer CF, Balmaña J, Bürki N, et al. Genetic counselling and testing of susceptibility genes for therapeutic decision-making in breast cancer-an European consensus statement and expert recommendations. Eur J Cancer 2019; 106: 54–60.
DOI: 10.1016/j.ejca.2018.10.007