Revista de Medicina de Laboratorio 00222 / http://dx.doi.org/10.20960/revmedlab.00222
Resumen| PDF

Revisiones - Metaanálisis

Gammapatías monoclonales y otros trastornos de células plasmáticas: el rol emergente de la espectrometría de masas


Gema García-de la Rosa, Silvia de las Heras-Flórez, Mercedes Carretero-Pérez, Jorge Nuevo-García

Prepublicado: 2024-11-27

Logo Descargas   Número de descargas: 473      Logo Visitas   Número de visitas: 143      Citas   Citas: 0

Compártelo:


Las gammapatías monoclonales y otros trastornos de células plasmáticas son enfermedades que implican la proliferación anormal de células plasmáticas y la producción de inmunoglobulinas clonales. Históricamente, el diagnóstico y el seguimiento de estas condiciones han dependido de técnicas, como la electroforesis de proteínas y la inmunofijación, que identifican y caracterizan las proteínas monoclonales generadas por estas células. En los últimos años, la espectrometría de masas se ha posicionado como una tecnología clave en este campo. Esta herramienta avanzada ofrece una capacidad sin precedentes para detectar, identificar, cuantificar e isotipar proteínas monoclonales de manera precisa y temprana, con una mayor sensibilidad y especificidad. Esto no solo mejora el diagnóstico inicial, sino que también facilita una monitorización continua y más efectiva de la progresión de la enfermedad.

Palabras Clave: Gammapatías monoclonales. Macroglobulinemia de Waldenström. Amiloidosis de cadenas ligeras. Proteína monoclonal. Espectrometría de masas.



Murray DL. Bringing mass spectrometry into the care of patients with multiple myeloma. Int J Hematol 2022;115(6):790-8.
DOI: 10.1007/s12185-022-03364-2
Murray DL, Dasari S. Clinical Mass Spectrometry Approaches to Myeloma and Amyloidosis. Clin Lab Med 2021;41(2):203-19.
DOI: 10.1016/j.cll.2021.03.003
Derman B, Castillo JJ, Sarosiek S, Beksac M. When a Monoclonal Gammopathy Is Not Multiple Myeloma. Am Soc Clin Oncol Educ Book 2022;42:1-10.
DOI: 10.1200/EDBK_349643
Willrich MA, Katzmann JA. Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med 2016;54(6):907-19.
Grunenberg A, Buske C. How to manage waldenström's macroglobulinemia in 2024. Cancer Treat Rev 2024;125:102715.
DOI: 10.1016/j.ctrv.2024.102715
Pozzan M, Indennidate C, Varrà GG, et al. Amyloidosis and Amyloidogenesis: One Name, Many Diseases. Heart Fail Clin 2024;20(3):249-60.
DOI: 10.1016/j.hfc.2024.02.001
Keren DF, Bocsi G, Billman BL, et al. Laboratory Detection and Initial Diagnosis of Monoclonal Gammopathies. Arch Pathol Lab Med. 2022;146(5):575-590.
DOI: 10.5858/arpa.2020-0794-CP
Turner KA, Frinack JL, Ettore MW, et al. An international multi-center serum protein electrophoresis accuracy and M-protein isotyping study. Part I: factors impacting limit of quantitation of serum protein electrophoresis. Clin Chem Lab Med. 2020;58(4):533-546.
DOI: 10.1515/cclm-2019-1104
Wijeratne N, Tate JR, Wienholt L, et al. Report of the Survey Conducted by RCPAQAP on Current Practice for Paraprotein and Serum Free Light Chain Measurement and Reporting: a Need for Harmonisation. Clin Biochem Rev 2019;40(1):31-42.
Keren DF, Schroeder L. Challenges of measuring monoclonal proteins in serum. Clin Chem Lab Med 2016;54(6):947-61.
Willrich MAV, Murray DL, Kyle RA. Laboratory testing for monoclonal gammopathies: Focus on monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin Biochem 2018;51:38-47.
DOI: 10.1016/j.clinbiochem.2017.05.001
Bergstrom DJ, Kotb R, Louzada ML, et al. Consensus Guidelines on the Diagnosis of Multiple Myeloma and Related Disorders: Recommendations of the Myeloma Canada Research Network Consensus Guideline Consortium. Clin Lymphoma Myeloma Leuk 2020;20(7):e352-67.
DOI: 10.1016/j.clml.2020.01.017
Ludwig H, Miguel JS, Dimopoulos MA, et al. International Myeloma Working Group recommendations for global myeloma care. Leukemia 2014;28(5):981-92.
DOI: 10.1038/leu.2013.293
Katzmann JA, Willrich MA, Kohlhagen MC, et al. Monitoring IgA multiple myeloma: immunoglobulin heavy/light chain assays. Clin Chem 2015;61(2):360-7.
DOI: 10.1373/clinchem.2014.231985
Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009;23(2):215-24.
DOI: 10.1038/leu.2008.307
Martínez-López J, Lahuerta JJ, Pepin F, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014;123(20):3073-9.
DOI: 10.1182/blood-2014-01-550020
Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 2016;17(8):e328-46.
Schmitz A, Brøndum RF, Johnsen HE, et al. Longitudinal minimal residual disease assessment in multiple myeloma patients in complete remission - results from the NMSG flow-MRD substudy within the EMN02/HO95 MM trial. BMC Cancer 2022;22(1):147.
DOI: 10.1186/s12885-022-09184-1
Usmani SZ, Heuck C, Mitchell A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica 2012;97(11):1761-7.
DOI: 10.3324/haematol.2012.065698
Giles HV, Wechalekar A, Pratt G. The potential role of mass spectrometry for the identification and monitoring of patients with plasma cell disorders: Where are we now and which questions remain unanswered? Br J Haematol. 2022;198(4):641-53.
DOI: 10.1111/bjh.18226
Bergen HR 3rd, Dasari S, Dispenzieri A, et al. Clonotypic Light Chain Peptides Identified for Monitoring Minimal Residual Disease in Multiple Myeloma without Bone Marrow Aspiration. Clin Chem 2016;62(1):243-51.
DOI: 10.1373/clinchem.2015.242651
Noori S, Verkleij CPM, Zajec M, et al. Monitoring the M-protein of multiple myeloma patients treated with a combination of monoclonal antibodies: the laboratory solution to eliminate interference. Clin Chem Lab Med 2021;59(12):1963-71.
DOI: 10.1515/cclm-2021-0399
Langerhorst P, Noori S, Zajec M, et al. Multiple Myeloma Minimal Residual Disease Detection: Targeted Mass Spectrometry in Blood vs Next-Generation Sequencing in Bone Marrow. Clin Chem 2021;67(12):1689-98.
DOI: 10.1093/clinchem/hvab187
Dekker LJ, Zeneyedpour L, Brouwer E, et al. An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions. Anal Bioanal Chem 2011;399(3):1081-91.
DOI: 10.1007/s00216-010-4361-9
Barnidge DR, Dasari S, Botz CM, et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J Proteome Res 2014;13(3):1419-27.
DOI: 10.1021/pr400985k
Barnidge DR, Dasari S, Ramírez-Alvarado M, et al. Phenotyping polyclonal kappa and lambda light chain molecular mass distributions in patient serum using mass spectrometry. J Proteome Res 2014;13(11):5198-205.
DOI: 10.1021/pr5005967
Mills JR, Kohlhagen MC, Dasari S, et al. Comprehensive Assessment of M-Proteins Using Nanobody Enrichment Coupled to MALDI-TOF Mass Spectrometry. Clin Chem 2016;62(10):1334-44.
DOI: 10.1373/clinchem.2015.253740
Murray DL, Puig N, Kristinsson S, et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report. Blood Cancer J 2021;11(2):24.
DOI: 10.1038/s41408-021-00408-4
Dasari S, Kohlhagen MC, Dispenzieri A, et al. Detection of Plasma Cell Disorders by Mass Spectrometry: A Comprehensive Review of 19,523 Cases. Mayo Clin Proc 2022;97(2):294-307.
DOI: 10.1016/j.mayocp.2021.07.024
Kohlhagen M, Dasari S, Willrich M, et al. Automation and validation of a MALDI-TOF MS (Mass-Fix) replacement of immunofixation electrophoresis in the clinical lab. Clin Chem Lab Med 2020;59(1):155-63.
DOI: 10.1515/cclm-2020-0581
Zhu X, Li H, Liu Y, et al. MALDI-TOF-MS for rapid screening analysis of M-protein in serum. Frontiers in Chemistry 2022;10:890745.
Verona R, Zudaire E, Li K, et al. Comparison of the Analytical Performance of EXENT®, a Mass Spectrometry-Based Assessment of M-Protein, to SPEP and NGS-Based MRD in Multiple Myeloma Patient Samples. Blood 2022;140(Suppl.1):12446-7.
DOI: 10.1182/blood-2022-160249
Milani P, Murray DL, Barnidge DR, et al. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am J Hematol 2017;92(8):772-9.
DOI: 10.1002/ajh.24772
Giles HV, Cook MA, Drayson MT, et al. Redefining nonmeasurable multiple myeloma using mass spectrometry. Blood 2022;139(6):946-50.
DOI: 10.1182/blood.2021013794
Kohlhagen MC, Mills JR, Willrich MAV, et al. Clearing drug interferences in myeloma treatment using mass spectrometry. Clin Biochem 2021;92:61-6.
DOI: 10.1016/j.clinbiochem.2021.02.011
Mills JR, Kohlhagen MC, Willrich MAV, et al. A universal solution for eliminating false positives in myeloma due to therapeutic monoclonal antibody interference. Blood 2018;132(6):670-2.
DOI: 10.1182/blood-2018-05-848986
Santockyte R, Puig O, Zheng N, et al. High-Throughput Therapeutic Antibody Interference-Free High-Resolution Mass Spectrometry Assay for Monitoring M-Proteins in Multiple Myeloma. Anal Chem 2021;93(2):834-42.
DOI: 10.1021/acs.analchem.0c03357
Kirchhoff DC, Murata K, Thoren KL. Use of a Daratumumab-Specific Immunofixation Assay to Assess Possible Immunotherapy Interference at a Major Cancer Center: Our Experience and Recommendations. J Appl Lab Med 2021;6(6):1476-83.
DOI: 10.1093/jalm/jfab055
Mellors PW, Kohlhagen MC, Dasari S, et al. Belantamab mafodotin detection by MASS-FIX and immunofixation. Clin Chem Lab Med 2021;59(11):e430-3.
DOI: 10.1515/cclm-2021-0326
Kumar S, Murray D, Dasari S, et al. Assay to rapidly screen for immunoglobulin light chain glycosylation: a potential path to earlier AL diagnosis for a subset of patients. Leukemia 2019;33(1):254-7.
DOI: 10.1038/s41375-018-0194-x
Dispenzieri A, Larson DR, Rajkumar SV, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia 2020;34(10):2749-53.
DOI: 10.1038/s41375-020-0940-8
Sidana S, Murray DL, Dasari S, et al. Glycosylation of immunoglobulin light chains is highly prevalent in cold agglutinin disease. Am J Hematol 2020;95(9):E222-5.
DOI: 10.1002/ajh.25843
Juskewitch JE, Murray JD, Norgan AP, et al. In from the cold: M-protein light chain glycosylation is positively associated with cold agglutinin titer levels. Transfusion 2021;61(4):1302-11.
DOI: 10.1111/trf.16279
Derman BA, Stefka AT, Jiang K, et al. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J 2021;11(2):19.
DOI: 10.1038/s41408-021-00418-2
Woodruff RK, Strahm BA, O'Connor PG, et al. Mass spectrometry for minimal residual disease detection in multiple myeloma: comparison with bone marrow-based methods. J Clin Oncol 2020;38(Suppl.15):8538.
Yee AJ, Raje N. Minimal residual disease in multiple myeloma: why, when, where. Hematology Am Soc Hematol Educ Program 2021;2021(1):582-91.
Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014;15(12):e538-48.
DOI: 10.1016/S1470-2045(14)70442-5
Rajkumar SV, Kyle RA, Buadi FK. Advances in the diagnosis, classification, risk stratification, and management of monoclonal gammopathy of undetermined significance: implications for recategorizing disease entities in the presence of evolving scientific evidence. Mayo Clin Proc 2010;85(10):945-8.
DOI: 10.4065/mcp.2010.0520
Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J 2018;8(6):59.
DOI: 10.1038/s41408-018-0077-4
Treon SP, Tedeschi A, San-Miguel J, et al. Report of consensus Panel 4 from the 11th International Workshop on Waldenstrom's macroglobulinemia on diagnostic and response criteria. Semin Hematol 2023;60(2):97-106.
DOI: 10.1053/j.seminhematol.2023.03.009
Hasib Sidiqi M, Gertz MA. Immunoglobulin light chain amyloidosis diagnosis and treatment algorithm 2021. Blood Cancer J 2021;11(5):90.
DOI: 10.1038/s41408-021-00483-7
Perfetti V, Garini P, Vignarelli MC, et al. Diagnostic approach to and follow-up of difficult cases of AL amyloidosis. Haematologica 1995;80(5):409-15.

Revisiones - Metaanálisis: Utilidad de la espectrometría de masas para el análisis de metabolitos en líquido cefalorraquídeo de pacientes con errores congénitos del metabolismo

Maria Antònia Caro-Miró , Blai Morales-Romero , Judit García-Villoria

Artículos más populares

Imagen - Infografías: Cristales de bilirrubina en orina en un caso de síndrome de Stauffer

Publicado: 2023-08-22

Imagen - Infografías: Cristales de nitrofuratoína en orina

Publicado: 2023-03-27

Originales Breves: Estudio multicéntrico de la susceptibilidad a antibióticos de Rothia mucilaginosa

Introducción: determinar el patrón de sensibilidad...

Publicado: 2024-04-01

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.